7 Your Daily Dose of Vitamin *i*

- 1. We will use complex numbers to find identities for cot. Use Pascal's triangle to expand the following:
 - (a) $(a+b)^3$ (b) $(a+b)^4$ (c) $(a+b)^5$

Then substitute $b = i = \sqrt{-1}$ and expand:

(d) $(a+i)^3$ (e) $(a+i)^4$ (f) $(a+i)^5$

Finally, substitute $a = \cot \theta$ and expand:

(g) $(\cot \theta + i)^3$ (h) $(\cot \theta + i)^4$ (i) $(\cot \theta + i)^5$

Consider $z = i + \cot \theta$.

(j) Use the above results to find identities for (i) $\cot 3\theta$, (ii) $\cot 4\theta$, and (iii) $\cot 5\theta$.

(k) Graph z, z^2, z^3, z^4 , and z^5 , with $\theta \approx 75^\circ$. What method did you use?

- 2. Compute $(1+i)^n$ for $n = 3, 4, 5, \dots$ Can you find a general pattern?
- 3. Expand and graph $\operatorname{cis}^{n} \theta$ for $n = 2, 3, 4, \ldots$ and $\theta \approx 50^{\circ}$.
 - (a) Why is the real part $\cos n\theta$ and the imaginary part $\sin n\theta$?
 - (b) Use your results to write identities for $\cos n\theta$ and $\sin n\theta$ for n = 2, 3, 4, 5.
- 4. Compute $\cos 7^\circ + \cos 79^\circ + \cos 151^\circ + \cos 223^\circ + \cos 295^\circ$ without a calculator. (Hint: What does this have to do with complex numbers?)
- 5. Factor the following:
 - (a) $x^6 1$ as a difference of squares;
- (d) $x^6 1$ completely; (e) $x^4 + x^2 + 1$ completely.
- (b) $x^6 1$ as a difference of cubes;
- (c) $x^4 + x^2 + 1$ over the real numbers;
- 6. Let $f(z) = \frac{z+1}{z-1}$.
 - (a) Without a calculator, compute $f^{2020}(z)$.
 - (b) What if you replace 2020 with the current year?
- 7. Find Im $((\cos 12^\circ + \cos 48^\circ)^6)$.
- 8. Let x satisfy the equation $x + \frac{1}{x} = 2\cos\theta$.
 - (a) Compute $x^2 + \frac{1}{r^2}$ in terms of θ .
 - (b) Compute $x^n + \frac{1}{x^n}$ in terms of n and θ .